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Stability concepts arising in the numerical solution of ordinary differential equations 
are reviewed in order to analyze their role in the classical solution of atomic and molecu- 
lar scattering problemsTreatment of dynamically stable systems is shown to require con- 
sideration of the integrator’s absolute stability range while treatment of dynamically 
unstable systems primarily requires the use of stable integrators with small truncation 
errors. The stability properties of a variety of model scattering problems are considered 
and restrictions due to absolute stability requirements are related to characteristic 
frequencies of the system. Dynamic instability due to long range attractive interactions 
as well as in collinear H + Hz collisions is also discussed. The time dependent eigen- 
values of the stability matrix are given for several atom - harmonic oscillator and 
collinear H + Hz sample trajectories. 

Over the past decade, the classical trajectory technique has been firmly 
established as a useful tool for studying reactive scattering in chemical systems [ 11. 
In addition, classical trajectory techniques have also been used to study a variety 
of other molecular processes, such as rotational and vibrational energy transfer [2], 
equilibrium behavior of large systems [3], and molecular scattering off surfaces [4]. 
Until recently, these studies were primarily in the hands of trajectory “experts,” 
but the technique now appears sufficiently well developed and informative to show 
signs of becoming part of the tools of the trade for many chemical physicists. 
Furthermore, recent developments in semiclassical scattering theory [S] indicate 
that classical dynamics may be useful for the study of quantum as well as classical 
effects in atomic and molecular scattering. Thus, one can expect to see more studies 
involving classical trajectory techniques in the near future. 
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Despite these developments, little effort has been made to design integrators 
specifically suited to molecular dynamics problems or to utilize recently developed 
integration techniques; such efforts require facility with stability concepts which are 
often unfamiliar to the “molecular dynamicist.” Thus, for example, the majority 
of studies have been carried out using classical Runge-Kutta methods [6]; only 
recently have more efficient predictor-corrector methods been employed [7]. 

This paper deals with numerical methods for integrating Hamilton’s equations. 
Our purpose is to clarify the role of absolute, relative and dynamic stability in the 
practical solution of molecular scattering problems. Section I provides an introduc- 
tion to these stability concepts. It is specifically designed to provide a much needed 
summary of the fundamentals of numerical methods for ordinary differential 
equations. Particular emphasis is placed on the relationship between the stability 
matrix and the choice of integration technique. In Section 2 the theory is placed in 
the context of solving Hamilton’s equations for atomic and molecular systems and 
the behavior of the eigenvalues of the stability matrix for several model dynamic 
systems is discussed. 

1. STEPWISE SOLUTION TO COUPLED SETS OF 
ORDINARY DIFFERENTIAL EQUATIONS [8] 

A. Introduction 

Consider the initial value problem described by an autonomous system of 
ordinary differential equations 

dY/dt = f(Y(t)), 

Y&J = Yo 7 
(1) 

where y is k dimensional vector. An example is Hamilton’s equations for an n 
particle dynamical system with Hamiltonian H of the form 

H = i Pt’Pmi + WI,..., qT), 
i=l 

where r = 3n, pi are the momenta conjugate to the coordinates qi , mi are general- 
ized masses, and V is the potential energy. Classically, the time evolution of the 
system is described by Hamilton’s equations [9], 

dq,ldt = aH/api = pilmi 

dp,ldt = -aHlaq, = -av/aqi , 
(i = l,..., r), 

where t is the time. 
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With the initial values of qi , pi at time to , Eq. (3) forms a system of the type 
encompassed by Eq. (1). We assume that these equations satisfy the conditions 
necessary to admit a solution, and that the right hand side of Eq. (3) has as many 
derivatives as required to satisfy the conditions of theorems leading to the results 
discussed be1ow.l 

Knowing y at time t,-, = r,, + (n - 1) h we might try to obtain y at some time 
t, = t,-, + h via 

y&d = Wn-1) + h&n-, 3 y(tn-11, h), (4) 

where hg(tnml , y(t&, h) approximates the change in y, given exactly by Eq. (l), 
between times t, and t,-, . We denote a solution to Eq. (1) at time t, , obtained by 
an algorithm such as Eq. (4), by y(t,); the exact solution will be denoted by z(t,J. 
Successive application of Eq. (4), starting with the given initial condition y(tO) = y,, , 
results in the tabulation of y at equally spaced values of the independent variable t. 
Equation (4) describes the general class of one step methods. 

If, for example, g(tnwl , y(t,-I), h) is taken to be 

g(t,ml , y(t,-I), h) = $ /1n-l + ; $ lfnTl h + sm. + + $$ It._1 hi-‘, (5) 

Eq. (4) is a truncated Taylor series expansion for y(t,) about t,-, . 
In both one step methods and multistep methods discussed in Section 1D below, 

one defines the truncation error as the local error made in approximating the 
change of the dependent variable from time t,-, to t, . In the case of Eq. (4) with g 
given by Eq. (5) it is on the order of (d(j+l)y/dt(jfl))It,_, hj+l/(j + l)!. A method 
with a truncation error of the order h m+l is said to be a method of order m. Other 
errors which enter into the calculated y(t,) result from roundoff and other 
numerical errors introduced in the computation of functions contributing to the 
right side of Eq. (4). Furthermore, in the nth application of Eq. (4), to calculate 
y(t,) from y(t,& we pass on the error accumulated from all preceding steps. Thus, 
in utilizing methods of the form of Eq. (4), or of any step dependent method, we 
are concerned not only with the magnitude of the error incurred at each step, but 
also with the extent to which this error is propagated. 

Any numerical method proposed to approximate the solution to Eq. (1) should 
satisfy two conditions [8]: 

(a) In the limit of small enough step size h we can obtain, via application 
of the method, a numerical solution which is as close to the true solution as desired. 
A method which satisfies this criterion is said to be convergent. 

1 It is generally assumed that the physical nature of the problem assures that these conditions 
are satisfied. The necessary requirements are outlined in most texts on ordinary differential 
equations. 



394 PAUL BRUMER 

(b) A step size h, > 0 should exist for each differential equation, such that a 
fixed change in the initial conditions produces a bounded change in the numerical 
solution for all 0 < h < h, . A method satisfying this criterion is said to be stable. 

These are necessary (but not sufficient) conditions for the usefulness of a 
particular method in practice. They essentially guarantee that the method can 
provide as accurate a solution as desired, and that the method does not amplify the 
effects of changes in the initial conditions. These are not, however, practical 
conditions since a method may only satisfy conditions (a) and (b) with an infini- 
tesimal (and hence nonuseful) step size. In practice a finite step size must be used 
and we want the method to satisfy practical analogues of these requirements, i.e., 
that (a) by reducing the step size to a still useable value we can obtain a solution 
with tolerable error, and that (b) for the range of useful step sizes, the method 
does not amplify changes in the initial conditions. 

B. Absolute Stability 

The concept of absolute stability is introduced in an effort to obtain a practical 
criterion for error propagation in a particular numerical method. One considers a 
special case of Eq. (l), the single differential equation 

dy 
dt= AY9 Y(to) = Yo (6) 

with h a complex number. We ask how an error, introduced at time t,_, propagates 
to t, for a particular method. For one step methods, the region of the hh complex 
plane in which errors introduced at time t,_l do not amplify in the step to t, 
defines the region of absolute stability for the particular method. As an example, 
consider Euler’s method (i.e., g(t,_l , y(t,& h) = dy/dt It,_l in Eq. (4)) giving 

Y(GJ = YLJ + 2 It _-l h 
n 

= y(tn_1>(1 + W. 
(7) 

Assurance that an error introduced at time t,_l is not amplified in the step to t, 

requires 

Il+hhl<l; (8) 

i.e., that hh be confined to the unit circle about (- 1,O) in the complex Xh plane. 
This then is the region of absolute stability for the Euler method. Clearly, different 
methods have different regions of absolute stability. In practical applications we 
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want to vary h so that hh remains in the region of absolute stability, thus reducing 
local error propagation. 

Although Eq. (6) is used to define the region of absolute stability, the region so 
obtained is useful for other differential equations as well. Consider the system of 
differential equations given by Eq. (1). If the exact solution of the system at t, is 
z(f,J and the computed solution is y(t,), the error e(t3 at time t, is given by [lo] 

and 

e&J = z&J - y(t,> 

de&J - = dzo - @$J = f(y(t,) + e(Q) - f(y(tn)). 
dt dt (9) 

Assuming that f is well behaved in the region of z(t,) and y(t,) we have, for the 
components of e(t,), by the mean value theorem, 

as afl -- 
a~, aY2 I : afk ’ afk -- 
aY, aY2 

. . . 

. . . 
(10) 

where the matrix (af/ay) (the stability matrix) is evaluated at the mean value, 
which lies between y(t,) + e(t,) and y(t,). Equation (10) demonstrates that 
(af/ay) provides an indication of local error propagation, for a system of differen- 
tial equations. When applied to Eq. (3) this matrix provides a connecting link 
between local error propagation in the numerical solution of Hamilton’s equations 
and physical properties of the system under consideration. This is considered in 
greater detail in Sections 1 F and 2 below. 

Analogy with the discussions above regarding Eq. (7) suggests that hh, , where 
hi are the eigenvalues2 of (af/ay), should be confined to the region of absolute 
stability to reduce error propagation. This is indeed the recommended procedure 
[8] although rigorous results regarding stability regions have primarily been 
established for coupled sets of linear differential equations. Nonlinear equations 
are usually treated by first subjecting them to linearization; i.e., Eq. (1) is expanded 
about y(t,) to yield 

fig = f(Y(bd) + g 1 (t ) (Y - y(t,)) + O(h2). 
Y n 

2 The stability matrix will be diagonalizable if all its eigenvalues are distinct. I f  the eigenvalues 
are not distinct then the proof is somewhat more complicated but the same result is obtained. 
(See Ref. [lo].) 
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Thus, discussions based on the eigenvalues of af/ay for nonlinear systems are not 
rigorous but do provide a qualitative guide to local error propagation [8b, 
Section 3.51. 

In practice we can approximate af/ay or hi at the mean value by the value at 
y(t,) if af/ay or hi vary sufficiently slowly. As discussed below (Section 2), for 
problems in classical molecular dynamics, hi can be positive or vary considerably 
over the course of a trajectory so that it may not be possible to choose or vary h so 
that it always lies in the region of absolute stability for a given integration method. 

C. Higher Order One Step Methods 

Euler’s method [Eq. (7)] is the simplest application of the Taylor series. Expres- 
sions involving higher order terms in the Taylor series result in smaller truncation 
errors but are computationally slow and tedious due to the need for the higher 
derivatives. To avoid the evaluation of these derivatives Runge-Kutta methods 
may be used, methods in which the evaluation of each successive higher derivative 
is replaced by an evaluation of the function f(y) at intermediate points in the 
interval [tn-l , t,]. 

Consider for example the second order Taylor series method (the notation used 
is for one differential equation but is valid for its vectorial analog) 

The leading term in the truncation error is of order (d3y/dt3)l,n-l h3/6. We wish to 
replace Eq. (11) by 

,*:tn> = dfn-1) + Phf[Y(tn-3, tn-11 + NW, t,-1 + $4, 

X = At,-1) + 4fb(fn-A tn--ll, 
(12) 

where /?, y, q, and cy are unknown parameters. Expandingf(X, t, + vh) in a Taylor 
series, substituting into Eq. (12) and equating powers of h and h2 in the resulting 
equation with those in Eq. (1 l), gives the conditions 01 = r) = l/(27) and 
/I + y = 1; that is, three equations in four unknowns. The free parameter may be 
used to minimize the truncation error (of order h3), the roundoff propagation, etc., 
each choice resulting in a different second order method. Higher order 
Runge-Kutta methods are developed in a similar fashion.3 As in the above example, 
their derivation leaves several free parameters which are useful for minimizing 

8 In high order methods care must be taken to insure that the derivation is valid for systems of 
equations as well as a single differential equation. (See Ref. [13].) 
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truncation error, roundoff error, and error propagation. The fourth order Runge- 
Kutta method, extensively used to obtain solutions to chemical dynamics problems, 
has the form [ 111 

~(&a) = YLI) + i a&, , 
i=l 

(13) 

where ai are constants and ki are f evaluations at various points in the interval 
[t, , t,J. Its region of absolute stability, obtained by applying Eq. (13) to y’ = hy, 
is given by 

nn 

igo”” n! <l (14) 

and is shown in Fig. la. The region is considerably larger than that of the Euler 
method discussed above. 

(b) 
l Zi 

c:l -4 -2 0 .2 r4 

-2i 

FIG. 1. Absolute stability region for (a) the fourth order Runge-Kutta method and (b) the 
fourth order Adams-Moulton method. 

58IlI414-6 
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Runge-Kutta methods have several features which make them useful. The 
algorithms are simple and possess large regions of absolute stability. They are 
stable and convergent [12], being simply related to the Taylor series expansion. 
Furthermore, y(tJ is evaluated using values at t,-, only, thus if step size changes 
become necessary, either to modulate the truncation error or to comply with 
absolute stability requirements, they may be introduced at any point during the 
course of the integration. The methods have, however, several undesirable features. 
First, in order to attain a Mh order method, k < 4, f(y) must be evaluated k times. 
For k > 4 at least k + 1 evaluations must be made [13, 141. If f(y) is time con- 
suming to evaluate, as it often is in a realistic trajectory calculation, this can be a 
serious restriction. Furthermore, it is difficult to reliably estimate the local trunca- 
tion error at time t, in order to ascertain whether a step size change is required. 
Modified Runge-Kutta methods which include local truncation error estimates 
such as the Runge-Kutta-Merson method [ 151 often require additional evaluations 
of f(y) although there are some exceptions [16]. 

An additional drawback of Runge-Kutta methods, from the viewpoint of 
computing time, is that they are inefficient. They are based on an interpolation 
from y(t,+J to y(t,) using evaluations of f(y(t)) in the interval [tnel, t,], i.e., a 
forward interpolation from t,-l . Thus, although y(tJ and f(y(Q) i = O,..., n - 1, 
have already been evaluated they are not utilized in the step from tnel to t, . 
Methods utilizing these values are referred to as multistep methods and can provide 
accurate solutions with fewer function evaluations. 

D. Multistep Methods and Stability 

Multistep methods are conceptually different from one step methods in that the 
system of differential equations is replaced by a set of linear difference equations 
which provide a means of obtaining y(t,J from the set of values y(t,& i = l,..., k 
and f(y(t&), i = 0 ,..., k. They are designed to give y(t,) exactly if y(t) is a poly- 
nomial in t of some predetermined order and in this respect are similar to quadra- 
ture methods for the integral evaluation [ 171. In replacing the system of differential 
equations by a set of difference equations, one introduces difficulties related to the 
stability of the method, as discussed below. 

The general multistep method may be derived as follows [18]; Equation (1) is 
rewritten as 

y&J = Y(tn-d + f” f(W) 4 
h-1 

(15) 

and f(y(t)) is approximated by an interpolating polynomial in t with coefficients 
containing previously known values off, i.e., f(y(tnml)), f(y(t,-a)).... 



STABILITY IN CLASSICAL SCATTERING 399 

The integral in Eq. (15) is then easily evaluated giving 

Y(L) = Y(L-1) + h li Af(YL)), 
i=O 

where h = (t, - tn-3 = (tnml - tn-J = ~1. = (&p-k+1 - t,-3, and fli are con- 
stants characteristic of the interpolating polynomial. This equation provides an 
approximation to y(t,) using values of y(t,+) and f(y(t,+)), i = O,..., k. 

Alternatively, dy/dt can be approximated using a finite difference 

1 k 
4W It, = h %Fo w&d = fWn)l. 

Rearranging gives 

where 01~ are constants characteristic of the particular finite difference approxima- 
tion. Equation (17) gives y(t,) in terms of f(y(t,)) and y(t,-J, i = I,..., k. 

Combining Eqs. (16) and (17) gives the general k-step integration method 

aOYCfn) = i u*Y(LJ + h 2 bif(Y(t9z-i))9 (18) 
is1 i=O 

where ai , bi are combinations of ai and /3i . 
Although Eq. (18) has been derived by assuming a particular choice of the 

interpolating polynomial to obtain (16) and finite difference approximation to 
obtain (17), an alternative approach is possible. We can regard Eq. (18) as a general 
interpolation formula for y(tn) and choose ai , bi so that Eq. (18) is exact for 
y= l,t,P ,.**, P; the linear form of (18) insures that it is also exact for any y(t) of 
the form cF=, Citi. The method is then of order p with a truncation error for any 
general y(t), of D[d@+l) y/dtQ’+l)] hp+l, with D given in terms of ai, bi . With 
2k + 2 constants in Eq. (18), less one for normalization, an interpolating poly- 
nomial can be constructed resulting in an integration method of order 2k. Having 
obtained the constants ai , bi , it is necessary to ascertain whether the method is 
convergent and stable. It is unfortunately not; in general one cannot construct a 
stable integration method based on Eq. (18) which is of order greater than k + 2 
[19]. This result will be discussed in greater detail below. 

If, in Eq. (18), b, = 0, then evaluation of y(t,J makes use of the values y(t& 
and f(y(t,-J) for i = I,..., k, and the method is said to be explicit. If b, # 0, then 
Eq. (18) is a nonlinear equation for y(t,) and the method is said to be implicit. 
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The advantages of methods based on Eq. (18) over one step methods are obvious. 
In explicit methods (b, = 0) a step from t,-, to t, requires only one evaluation of 
f, at y(t,.& and we can obtain this with a truncation error as small as U(/Z~+~). 
This provides a considerable saving in computer time over the one step methods 
where the truncation error is related to the number of function evaluations. 
Starting at to with y(t,,) and f(y(t,,)) known does require the use of a one step method 
to accumulate k values of y and f, but this is only a minor inconvenience. A major 
disadvantage of the k-step method, however, is that step size changes require 
restarting with a one step method or the inclusion of an auxiliary interpolation 
procedure. Nevertheless, the multistep methods are usually more efficient than the 
one step methods. 

In one step methods the nature of the Taylor series, and the simple connection 
between the Taylor Series and the Runge-Kutta method results in methods which 
are stable and convergent. We have already implied that this is not the case for the 
multistep methods. To demonstrate the difficulties involved in establishing a stable 
multistep method we consider a modification of the example due to Hamming [ 171. 
For k = 3 and a single differential equation (the argument can be generalized to a 
system of equations), Eq. (18) becomes, with a, absorbed into the other coefficients, 

where 
Yn - 4 Yn-1 - UzYn-2 - a3yn-3 = F,(Y), 

Yn = Y(fn) and F,(Y) = h i hf(Y(Li)). 
i=O 

If z, is the exact solution to the differential equation at t, , then 

zn - alz,-l - azzne2 - a3znv3 = F,,(z) + E, , (1% 

where Fn(z) = h &, bif(z(tnei)). The quantity E, is nonzero since the true 
solution to the differential equation does not satisfy the difference equation. The 
equation for the error e, = z, - yn at time t, , is then 

e, - ale,-, - u2ene2 - u3en-3 = F,(z) - F,(y) + E, . (20) 

The solution to Eq. (20) is a combination of the general solution to the 
homogeneous difference equation 

en - ale,-, - a2enm2 - a3enT3 = 0 (21) 

and a particular solution to Eq. (20). Note that the solution to Eq. (21) may be 
regarded as the solution of Eq. (20) in the limit of h and E, + 0 since F,(z) and 
F,(y) are proportional to h. 
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The solution to Eq. (21) is obtained by assuming that e, = (p)“. Equation (21) 
then becomes 

p3 - alp2 - a,p - a3 = 0, (22) 

with the general solution 

en = Gpl” + C2p2” + C3p3A, (23) 

if p1 , p2 , p3 , the roots of Eq. (22), are distinct. Ci are constants dependent on the 
initial conditions associated with Eq. (20). In general one root, say p1 (the principal 
root) will equal 1 and corresponds to the behavior of the solution itself. p2 and pa , 
however, result from the use of y,+i and yne2 in the approximation to the differen- 
tial equation and are explicit functions of the coefficients ai . If / pZ 1 > 1 
or j p3 / > 1 then these terms will dominate the growth of the error and the 
method would be unstable. To insure that these extraneous roots do not cause the 
error to grow faster than the solution, a 1 , a2 , a3 must be chosen so that / p2 / and 
) p3 / are < 1. (p2 or p3 may not equal one since if one does (say p2) the solution to 
Eq. (22) is e, = C,pln + C2np2” + C3p3n and once again the extraneous roots 
dominate the error growth.) 

It is worthwhile emphasizing that this result has been obtained in the limit h -+ 0 
and is therefore a stability property of the integrator, independent of the step size h 
(unlike absolute stability discussed above). Unstable methods must therefore be 
avoided since variation of h during the calculation cannot correct this difficulty. In 
general, methods proposed after 1960 explicitly consider stability requirements.* 

Extension of this type of argument to the k-step method [19] shows that a 
method is stable if the roots pi of the equation 

k 

49” - C 
a&-i = 0 (24) 

i=l 

are inside or on the unit circle and the roots on the unit circle are distinct. It is this 
type of condition which leads to the restrictions that stable methods based on 
Eq. (18) can be at most of order k + 2. 

As in the case of the one step methods it is necessary to consider finite step sizes, 
our concern being directed towards insuring that the extraneous roots, for nonzeroh, 
are damped out for large n. This requirement establishes the region of absolute 
stability in the hh plane. Thus, we consider Eq. (20) with finite h for the differential 
equation dy/dt = f = Xy, giving 

e,(l - hhb,) - e,-,(a, + hhbJ - en-2(a2 + Mb,) - ena3(a3 + hhb,) = E, . (25) 

4 Recent texts, such as that of Gear [8] and J. W. Daniel and R. E. Moore [18], discuss the 
stability properties of many older integrators. 
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The homogeneous difference equation associated with Eq. (25) has the solution 
e, = C,pln + Czp2* + C3fSn where pi are the roots (assumed distinct) of the 
equation 

hh(b,p3 + b1p2 + b2p + b3) = p3 - alp2 - a,p - a3 * (26) 

The roots are functions of Ah and depend on the coefficients ai , bj with the prin- 
cipal root p1 behaving like e Ahn. The region of absolute stability of the method is 
that region of the Ah plane where I pi( < 1. 

As an example, consider the fourth order Adams-Moulton method; that is, 
a, = 1, a2 = a3 = 0,24b, = 9, 24b, = 19, 24b, = -5, 24b, = 1. The method is 
stable, since Eq. (22) becomes p3 - p2 = 0, with the solution pi = 1, p2 = p3 = 0, 
i.e. all the roots are in, or simple on, the unit circle. The region of absolute stability, 
obtained from Eq. (26) is shown in Fig. 1 b.6 

Explicit methods based on Eq. (18) provide a simple and direct method of 
numerically approximating the solution to Eq. (1). In practice, however, implicit 
methods, which involve the solution of a nonlinear equation for y(t,), are more 
prevelant. Implicit methods are preferred since (a) the region of absolute stability 
for an implicit method is significantly larger than the region of absolute stability 
for an explicit method of the same order; (b) the truncation error of the implicit 
method is generally smaller than for the explicit method; (c) solution of the non- 
linear equation in the implicit method by the predictor-corrector method, as 
described below, allows for an estimate of the local truncation error incurred at 
each step. The latter can be particularly useful in scattering problems, where the 
behavior of the system, and consequently the required step size, can differ con- 
siderably in the region where the particles are incoming or outgoing and in the 
region of the strong interaction. 

E. Predictor-Corrector Methods 

In utilizing implicit methods, one must evaluate f(y(t,)) when y(t,J is yet un- 
known. Predictor-corrector methods accomplish this task by evaluating an 
approximate value (the predicted value) of y(t,J, denoted y*(t,), using an explicit 
formula (the predictor) and then approximating f(y(t,)) by f(y*(tJ) in the implicit 
formula (the corrector) to obtain y(t,J (the corrected value). If y(t,J is not suffi- 
ciently accurate, it can be regarded as a new predicted value and the corrector 
reapplied. Not sufficiently emphasized, however, is that this iterative procedure 
will converge only for a restricted range, dependent on the particular predictor- 
corrector scheme, of hh. 

5 In this discussion we have neglected the concept of convergence introduced in Section 1B 
above. The relationship between stability; convergence and Eq. (24) is discussed in detail in 
[Sal and [21]. 
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The general predictor-corrector scheme is thus based on successive applications 
of a pair of equations in the form (see Eq. (18)) 

where fnmi = f(y(tnPi)). Application of this method with one iteration of the 
corrector requires two evaluations of f per step. Since each successive application 
of the corrector requires an additional f evaluation, iteration of the corrector can 
be very time consuming. Thus, in practice, the corrector is normally applied only 
once, the step size being made smaller if the resultant y(t,) is not sufficiently 
accurate.6 

If the predictor is a method of order m with truncation error u* N O(P+l) and 
the corrector is of order n with truncation error (T N O(h”+l), then the truncation 
error 7 of the predictor-corrector method with the corrector applied once is [21] 

r = u + hd, af/lay u* - O(h”+l) + O(hm+2), (28) 

where af/lay is a mean value. Thus the order of the predictor-corrector method is 
min[n, m + I]. For a system of differential equations, Eq. (28) holds with 7, u, (T* 
as vectors and with af/lay replaced by the stability matrix. 

Normally, the stability properties of the predictor-corrector method are similar 
to those of the corrector, thus one can get a significant improvement in 
the range of absolute stability over that obtained for the predictor alone. 
In practice, the most useful aspect of predictor-corrector methods, however, is 
that 0:) = 1 y*ca)(t,) - yci)(t,)I can provide an estimate to the truncation error 
occurring in the nth step, where yci) is the zth component of y. Step size changes are 
made when dz’ becomes larger or smaller than given tolerances. Thus, unlike the 
one step methods where error monitoring is difficult, the monitoring of local errors 
in these schemes is relatively simple. The actual change of step from hold to h,,, 
may be carried out in one of several ways. An obvious but time consuming method 
is to restart at that point with a one step method. Alternatively, an interpolating 
polynomial [22] using stored values of y and f separated by hold may be used to 
obtain those y and f values separated by h,,, required to apply the predictor- 
corrector scheme with the new step size. It is important to insure that the truncation 
error of the interpolation formulae are of equal or higher order than the truncation 
error of the method itself. Otherwise the interpolation routine will restrict the 

B This is the approach advocated, for example, by Hamming [17]. More recent developments 
tend to imply that two applications of the corrector may be more efficient [8b, 201. 
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accuracy of the method.’ Step size changes by the interpolation method are usually 
carried out by either halving or doubling the step, due to the relative ease of these 
operations. It is necessary, however, to accumulate a certain number of steps of the 
same size before the step size change can be made. In the case of high order predic- 
tor-corrector schemes this requirement becomes very restrictive, the accumulation 
of a large number of steps being required before the step can be changed. Further- 
more, higher order methods tend to have smaller ranges of absolute stability. Thus, 
higher order methods need not necessarily be more efficient than lower order 
schemes. 

Permitting only halving or doubling, as opposed to arbitrary step size changes, 
can result in a considerable loss of efficiency. Recently developed variable-mesh 
methods [18,24] are designed to overcome this difficulty and increase integrator 
efficiency; e.g. a reduction of computing time by a factor of two for atom-rigid 
rotor collisions has recently been attributed to the use of a variable mesh Nordsieck 
method [25]. 

Finally we note that a variety of methods, such as extrapolation [26a], variable 
order [26b], variable coefficient difference equations [26c] and hybrid [26d] methods 
have been developed and have, as yet, attracted little attention in trajectory 
studies. Consideration of such methods seems warranted at this time. 

F. Relative and Dynamic Stability 

We have considered two notations of stability-stability of the method, which is 
a requirement in the limit of h + 0, and absolute stability which relates to finite h. 
There are two additional interrelated stability concepts which must also be dis- 
cussed. 

Relative Stability. Consider Eq. (6), which has the solution y(t) = yoeAt, where 
y0 = y(t,). In the examples given above (e.g. the Runge-Kutta, Euler or fourth 
order Adams-Moulton methods) the region of absolute stability does not include 
Re(h) > 0. Thus if Re(X) > 0 it is not possible to vary h in order to force Xh into 
the region of absolute stability for any of these methods. Intuitively, the reason for 
this is clear. The difference equation has a principal root which behaves like the 
actual solution, i.e., like eAhn for h # 0 and 1 if h = 0. Thus at least one term in e, 
will propagate like the solution to the equation, in this case exponentially, and for 
Re(h) > 0 it is not possible to obtain an h such that the error is not amplified at 
each step. Nevertheless the equation can be integrated since our primary interest is 
not to obtain a final error of small magnitude, but rather to obtain an error which 
is an acceptable fraction of the final solution. Thus, if both the error and solution 

’ An example is the Nordsieck method [23a]. For an analysis of Nordsieck’s step size changing 
routine see [23b]. 



STABILITY IN CLASSICAL SCATTERING 405 

grow as eAt, h > 0 the final solution may still be acceptable. Since the principal 
root, for finite h, behaves like the actual solution, we can assure that the growth of 
the error due to the presence of extraneous roots is not excessive by requiring that 
we remain in the region of the Xh plane where the extraneous roots are not larger 
than the principal root. This is said to be the region of relative stability. 

It is clear that although the principal root behaves like the solution, the extent 
to which it actually does so depends upon the accuracy, i.e., the size of the 
truncation error, of the method. As Gear indicates [8a], in practice the accuracy of 
the solution for cases where Re(h) > 0, is not usually limited by the relative 
stability criterion. Rather, for methods with extraneous roots to Eq. (24) well 
within the unit circle, the limiting factor is the requirement to reduce h to suffi- 
ciently small size so that the behavior of the principal root accurately reflects the 
behavior of the true solution. Hence, in practice, if Re(X) > 0, we will want to 
utilize a method with small truncation error having extraneous roots (for h = 0) 
well within the unit circle, and to carry out the integration with a small step size. 

The relative stability criteria may be extended to systems of linear equations. The 
case of general nonlinear systems of differential equations appears to be considera- 
bly more complex [8,24]. 

Dynamic Stability. The final notion of stability relates not to the method of 
integration, but rather to the behavior of the differential equation. For the single 
differential equation dy/dt = Xy if Re(h) > 0 the differential equation is said to be 
unstable, whereas if the Re(h) < 0 the differential equation is said to be stable. For 
the system of differential equations dy/dt = f stability is defined in terms of the 
real part of the eigenvalues hi of the stability matrix (af;l/ay,). If these eigenvalues 
are distinct and Re(&) < 0 for all the roots, then the system is said to be stable. 
Since this approach is closely allied to the stability theory of dynamic systems [27] 
we shall refer to this as dynamic stability.a 

Relative, absolute and dynamic stability are thus coupled in the following sense. 
If the system of equations displays dynamic instability then the relevant notion for 
their numerical solution is relative stability. Alternately, if the system of differential 
equations is dynamically stable, then the relevant notion for their numerical 
solution is absolute stability.s The behavior of hi , the eigenvalues of the stability 
matrix, during the time evolution of a dynamic system are seen to provide an 
indication of the type of integrator most suited to the particular problem. 

* For a brief introduction to dynamic stability, as well as a review of its recent applications in 
nonequilibrium thermodynamics. (See Ref. [28].) 

9 We call the attention of the reader to the unfortunate lack of convention in the literature since 
1960 regarding stability terminology. Ofttimes authors refer to each of these simply as stability. 
(As an example of the difficulties one encounters the reader is invited to reread the last paragraph 
in the text, replacing the words “absolute stability,” “relative stability,” “dynamic stability,” 
and “stability” by the word “stability.“) 
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2. THE STABILITY MATRIX IN CLASSICAL ATOMIC AND MOLECULAR SCAT?ERING 

In this section we consider the stability matrix for model scattering problems in 
order to gain insight into the behavior of hi and the relationship between the 
various stabilities and the physical properties of the system. Examining these model 
systems allows us to ascertain the extent to which absolute and relative stability 
criteria enter when solving Hamilton’s equations with realistic potentials. 

A. Form of the Stability Matrix 

Hamilton’s equations of motion for Hamiltonia of the form given by Eq. (2), are 
given in Eq. (3). In terms of mass weighted Cartesian coordinates 

ti = m,q, (i = l,..., r) 

Eq. (3) becomes, 

d 
z 

(1 

i. 
Pl 

Pr 

(29) 

Identifying y = (tl ,..., .$V , p1 ,..., pl.) and f = (pl 
@V/a&)), the stability matrix (a&/ayJ, defined in Eq. (lo), is given by 
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where 0 is an r x r matrix of zeroes, Z is an r x r unit matrix and A is an r x r 
matrix with elements Aij = -mi @V/ati a& = -( I/mj) @V/aq, aqj . 

The eigenvalues h of the stability matrix satisfy the equation 

or 

[ 

0 I z 
&at -----I----- = 0. 

A-+1\ 0 1 (31) 

The roots h2 of this polynomial are the same as those of the determinantal equation 

det(B - X21) = 0, (32) 

where B is a symmetric matrix with elements Bij = -(mimj)-li2 a2V/aq, aqi . 
Thus the eigenvalues of the 2r x 2r stability matrix for Hamilton’s equations 
occur in pairs (X, -X) and are given by the solution to an r x r determinantal 
equation (32). This reduction in dimensionality results from the independence of 
the momenta pi and coordinates qi , as well as the pi independence of the poten- 
tial V. 

Several general features are obvious from the form of Eq. (32). The eigenvalues 
are explicitly determined by the masses and potential appearing in the Hamiltonian. 
The available energy and momenta implicitly influence the eigenvalues by deter- 
mining the region of coordinate space in which Eq. (32) is to be solved. Further- 
more, free translation, which is not associated with any potential will contribute 
eigenvalues which are zero. In addition, since B is symmetric, X2 must be real; i.e., 
h is either real or pure imaginary. Since the eigenvalues come in pairs if Re(X,) # 0 
then for every exponentially increasing component there is also an exponentially 
decreasing component. 

Equation (32) provides a useful form from which the eigenvalues of the stability 
matrix may be obtained. In order to gain insight into the meaning of the eigen- 
values for physical systems of interest, we consider some model scattering problems 
below. These model problems are chosen to emphasize some of the essential 
features of the more complicated three dimensional many body scattering problem. 

B. Model Problems 

i. Translational-Vibrational Energy Transfer 

We consider the well known problem of the collision of a particle A with an 
harmonic oscillator B-C, the particles being constrained to move along a line. 
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The Hamiltonain is given by [29] 

where 

and 

~=&Lz2++P,l+ UX,Y), 2 

V(X, y) = $K( y - yo)2 + &-(@-y~)lL 

(33) 

(34) 

y = m&b + ml, 

pl = m&b + mC>/(mA f mB d- md, 

The coordinate x is the distance between A and the center of mass of BC and y is 
the B - C distance. The quantities p, and pu are the associated conjugate momenta. 
The masses of A, B and C are mA , mg and m, , K and y,, are the oscillator force 
constant and equilibrium distance, respectively. It has been assumed that a repul- 
sive exponential potential of strength D and range L acts between particles A and 
B. With P = [De-(z-“v)IL]/L2 and F = (K + Py2), the characteristic equation (32) 
for this system is 

-PIP1 - A 
PYh-w2Y2 

pYlcfw2)1/2 = () 

-F/p2 - A ’ (35) 

with the solution 

x2 = A = - ; [+ + +] f [; (5 + 5) - e + ?f]“‘. (36) 
1 

To illustrate the physics, we consider two limits of this expression. If the repulsive 
potential is short range (small L) or weak (small D), or if x is large, then P + 0 and 
the motion corresponds to essentially free translation of particle A and harmonic 
oscillation of the pair B - C. Equation (36) becomes 

or 

hz=il=--Z;l;h~*&~ 

A, = A, = 0, 
A, = -A4 = i(K/pz)1/2 = 2rri/r, 

(37) 

where r is the vibrational period of the harmonic oscillator. The roots A,, A, 
correspond to free translation and h 3 , A( correspond to the unperturbed vibra- 
tional motion. 
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For the oscillator eigenvalues, the restriction that hh lie inside a region in the hX 
plane is analogous to the condition that the step size h be restricted to less than a 
particular fraction of the vibrational period. If 1 hh j = s defines the limit of the 
absolute stability region for a particular integration method, then h must be less 
than s7/27~ to prevent error propagation. Thus, for example, for Nordsieck’s 
method [23], where s = 0.38, h < 0.067 is required to avoid error amplification. 
In the fourth order Runge-Kutta case, however, s - 2.5 (see Fig. la), hence 
h < 0.407 while the 5th order Adams-Moulton method, with s - 1 (see 18, 
Fig. 8.21, requires h to be less than N 0.167. For anharmonic oscillators these 
provide first estimates for the range of h applicable with a given integration method. 
Furthermore, these estimates provide a sample case where absolute stability 
requirements of a predictor-corrector method (e.g., the Nordsieck method) 
requiring only two function evaluations per step may force the step size to be so 
small that it becomes less efficient than the fourth order Runge-Kutta method 
which requires four function evaluations per step. 

In the second limit, that of unperturbed A - B relative motion, (i.e., K = 0 and 
mB>mmc> we have y-,0,p2-+mc,p1 - mAmBl(mA + mB). The two nonzero 
roots of Eq. (36) are 

A3 = --A, = i (-J&- ,-z/L)l”. 

Thus, long range potentials (large L), light reduced masses (pr small) or strong 
potentials (large 0) can result in large values of j X 1 at small x. 

In both these limits, Eqs. (37) and (38), the eigenvalues are pure imaginary, i.e., 
the motion is dynamically stable. Indeed one may easily show that the atom- 
oscillator system described by Eqs. (33) and (34) is dynamically stable throughout 
the course of the trajectory, independent of initial conditions. To see this we note 
that (1 in Eq. (36) can be real and positive only if PK < 0, which is not a physically 
meaningful regime. 

The dynamics of vibrational energy transfer for this system has been studied in 
great detail by Kelley and Wolfsberg [30]. To ascertain the behavior of the eigen- 
values of the stability matrix during collision we have repeated their calculations, h 
being obtained from Eq. (36) at fixed time intervals. The results shown in Fig. 2 are 
typical of those obtained. Here I h, I and 1 X, I are the absolute values of the (pure 
imaginary) eigenvalues; at t = 0 they correspond to the unperturbed translational 
and vibrational modes, respectively. Also shown are the X, y coordinates during 
the trajectory. Both the I X, I and I X, I curves show little structure, with a single 
peak seen in the region of small intermolecular distances. In some unusual cases, 
corresponding to multiple collisions [30], I X, / is bimodal. Large energy transfers 
were frequently found to be associated with max I h, I g 27~17, where 7 is the 
unperturbed oscillator frequency. For fixed masses and force constant the maxi- 
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FIG. 2. Sample oscillator-atom trajectory with weak energy transfer; the oscillator is initially 
nonvibrating; (a) coordinates and (b) stability matrix eigenvalues as a function of time. Solid 
lines for ) A, 1 and 1 At 1 indicate pure imaginary values. The standard time unit (STU) is 0.56 x 
IO-l4 sec. 

mum value of 1 A, 1 and 1 A, 1 increases with increasing collision energy, although 
1 A,, 1 never exceeded 27r/~. The largest eigenvalue observed in these studies was 
X = 9.839 STW (1.756 x 1015 set-l) which, with the Wolfsberg-Kelly stepsize 
h = 0.01785 STU(1 x lo-l6 set), gives Ah = 0.1756, a value well within the 
absolute stability region of the fourth order Runge-Rutta method used. Numerical 
studies on several sets of trajectories indicate that the stepsize is limited by trunca- 
tion errors rather than by stability considerations. 

ii. Long Range Attractive Interactions 

For the unbound motion of a particle in a potential well the situation is quite 
different from that described above. Introducing a long range attractive potential 
of the form - C/xN, C > 0, between A and B, the potential V (Eq. (34)) becomes 

V(x, y) = *K( y - y$ + De-@-vv)lL - C/xN. (39) 

In the limit of unperturbed A - B motion we are considering unbound motion in 
the potential well 

V(x) = De-“JL - C/xN, 
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and the nonzero eigenvalues of the stability matrix are given by 

For large X, if N(N + 1) C/X~+~ > (De-“‘“)/L”, h is real, the positive X indicating 
an unstable dynamic situation. For smaller X, where D/L2e-“IL > N(N + 1) C’/X~+~ 
the eigenvalues are pure imaginary. Thus, as A approaches B the system passes 
through a region of positive Re(h) and errors introduced at this stage will tend 
to amplify as a result of the instability of the system. 

The result is made more general by noting that two nonoverlapping atoms or 
molecules with centers of mass separated by a distance x interact via a potential 
which may be described by the multipole expansion [31]. This expansion is com- 
prised of terms of the form CN/xN, where CN depends on the instantaneous orienta- 
tion of the system. For orientations where the CN is negative and other interaction 
terms are small we can obtain positive real h for motion along x and hence 
expect error propagation. The magnitude of X, however, depends upon the precise 
nature of the interaction. 

As discussed in Section IF, regions in coordinate space with Re(h) > 0 must be 
integrated with accurate integration methods having roots to Eq. (24) well inside 
the unit circle. Although trajectories passing through regions where Re(h) > 0 
may be difficult to integrate, accurate solutions can be obtained if sufficient care is 
taken. 

To determine the extent to which a long range attraction alters the behavior of 
the atom-oscillator system discussed above we have considered several of the 
atom-oscillator systems of Kelley and Wolfsberg augmented by a coulombic -l/x 
interaction. [i.e., C = 1, N = 1 in Eq. (39)]. The results show that at large x, h, is 
real and small (- 0.18 SZYV) and becomes imaginary while still in the region 
where h, is at its unperturbed value. The change in the maximum of I h, I , due to 
the coulombic term, is only 10 %. The implications of this result are that error 
propagation due to dynamic instability at long range resulting from attractive 
interactions is probably serious only if the system remains in the unstable region 
for extended time periods or, naturally, if the integration is inaccurately carried 
out in this region. 

iii. Small Vibrations About A Potential Minimum 

We consider N particles interacting through a potential V which displays a 
minimum at coordinates Q, . Such systems arise in classical trajectory studies of 
unimolecular decomposition [32] A --+ B + C and in bimolecular reactions dis- 
playing a bound intermediate complex A + Be [A - B] + C + D [33]. In the 
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energy range where the motion consists of small vibrations about the potential 
minimum, the Hamiltonian H may be approximated by [34] 

H = z Pt/2mi + 4 F (3V/aQ,aQ,), QiQj , 
i=l i,j 

(41) 

where Qi are the Cartesian displacements from the potential minimum, and where 
the subscript 0 indicates that (a’F’/aQi aQj) is to be evaluated at the potential 
minimum. PI are the momenta conjugate to the coordinates Ql . The characteristic 
equation (32) becomes 

det(B - LlZ) = 0, 

where 

Bii = -(mimj)-1/2 (a2V/aQ, aQj>,, 

or 

det(E; - (l’Z> = 0, 

where Fij = - Bii and A’ = -A. 

(42) 

Equation (42) is identical to the secular equation defining the normal modes of 
the Nparticle system [34], with the kth normal mode frequency given by (/11c’)1/2/27r. 
Defining 7b = 2~/(&‘)l/~ as the period associated with the kth normal mode, the 
eigenvalues of the stability matrix are given by 

h, = *(flk)li2 = fi(.fl,‘)1/2 = fi2’lr/7-* , (43) 

i.e., if there are n normal modes there are two n roots which come in pairs. The 
restriction on hh, to insure absolute stability, i.e., h < srn/27r where s is a property 
of the particular integration method, is seen to restrict h to values less than some 
fraction of the smallest normal mode period of the system. This is a natural 
extension of the result obtained above for a single oscillator, but is valid, of course, 
only in the region where the small vibrations Hamiltonian (Eq. (41)) is applicable. 

iv. Collinear Reactive H + H2 

As a final example we consider the reactive collision of H and H, with the atoms 
restricted to lie along a line. This system which is regarded as a model for simple 
chemical reactions has been the subject of extensive investigation [35]. The Hamil- 
tonian is given by Eq. (33); x and y coordinates are defined as above. The potential 
V(x, y) is taken to be the realistic Porter-Karplus (PK) potential surface [36] and 
is shown in Fig. 3. Characteristic features are a saddle point of 0.396eV at 
x = 2.55a.u., y = 1.70a.u., and symmetric troughs which describe the incident 
and outgoing ZZ, diatomics. The diatomic equilibrium intermolecular distance is 
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at 1.40a.u. Reactive scattering occurs along a path of initially decreasing x (oscilla- 
ting y) and proceeds along a path at - 60” angle with respect to the x axis. Non- 
reactive scattering results when the trajectory is reflected back along the incident 
path. 

at 1.40a.u. Reactive scattering occurs along a path of initially decreasing x (oscilla- 
ting y) and proceeds along a path at - 60” angle with respect to the x axis. Non- 
reactive scattering results when the trajectory is reflected back along the incident 
path. 

X(OU) 

FIG. 3. Energy contours for the Porter-Karplus potential surface for collinear H + Hz [36]. 
Contours are spaced 0.2 eV apart for energies less than 1.0 eV and are spaced by 0.4 eV for 
energies greater than LOeV. Regions to the left of the diagonal line in the upper left- of the 
figure are classically inaccessible for the approach of A to the B end of the B-C diatomic. 

FIG. 3. Energy contours for the Porter-Karplus potential surface for collinear H + Hz [36]. 
Contours are spaced 0.2 eV apart for energies less than 1.0 eV and are spaced by 0.4 eV for 
energies greater than LOeV. Regions to the left of the diagonal line in the upper left- of the 
figure are classically inaccessible for the approach of A to the B end of the B-C diatomic. 

Contour diagrams of the two stability matrix eigenvalues are shown in Figs. 4 and 
5. The eigenvalue I h, I (Fig. 4) initially corresponds to translational motion and 
asymptotically (large x) approaches zero. The second eigenvalue 1 X, 1 (Fig. 5), 
initially corresponds to vibrational motion of an unperturbed Hz molecule. In 
both cases small x or y values are seen to lie in stable regions, whereas large x and 
y values correspond to a dynamically unstable region. The region of dynamic 
instability for I & I begins at a much smaller x and y value than that for I h, 1 . In 
addition, the maximum unstable 1 h, 1 is four times that of 1 h, I . An incoming Hz 
molecule in its lowest vibrational state, will oscillate about y = 1.40a.u. and will, 
for x smaller than - 2.9a.u., pass in and out of the I XT ) region of dynamic 
instability. A reactive or nonreactive path, at low energies is not expected, however 
to cross into the region of 1 h, I instability. 

Sample reactive and nonreactive trajectories for ground state Hz with 0.483 eV 
translational energy are shown in Figs. 6 and 7. As expected, I h, I remains pure 
imaginary and I AT 1 shows oscillations, between dynamic stability and instability, 
during the close collision. The sharp peakes in I&. I are a consequence of the rapid 

58111414-7 
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FIG. 4. Absolute value of the first eigenvalue (X,) for the PK surface (Fig. 3) ~ f  
imaginary values, - - - - - - -, real values. Contours are spaced 0.25 STU-1 apart. 

FIG. 5. Absolute value of the second eigenvalue (&) for the PK surface (Fig. 3). Notation aS 
in Fig. 4. 
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TIME (stu) 

FIG. 6. Sample reactive H -+ Ha trajectory; (a) coordinates and (b) eigenvalues of the stability 
matrix, as a function of time. In (b); ~ 
(a); RAC = x + y/2, RBC = y, RAB = x - y/2.’ 

imaginary values, - - - - - - -, real values. In 
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FIG. 7. Sample nonreactive H + Hz trajectory. Notation as in Fig. 6. 
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FIG. 8. Shorter sample reactive H + Hz trajectory. Notation as in Fig. 6. 

changes in the magnitude and nature of the eigenvalue contours in the region near 
the saddle point. No apparent difference in the behavior of 1 h, / or 1 X, 1 is seen 
between the reactive and nonreactive trajectories. In addition, the increase in 
magnitude of 1 h, 1 in the outgoing path is primarily a consequence of vibrational 
energy transfer into the product H, molecule. A somewhat shorter reactive trajec- 
tory, more characteristic of those seen in three dimensional calculationslO [lb], 
is shown in Fig. 8. Here [ h, / shows only one sharp unstable peak in the region of 
the close collision. In summary, the system is dynamically stable (in the x, y 
coordinate system) during the majority of the collision. In the region of close 
collision, however, error propagation will tend to be large as a consequence of the 
dynamic instability of the system. The fact that the time spent in the dynamically 
unstable region is relatively short suggests that excessive difficulty in numerical 
integration, due to dynamically unstable behavior is not an attribute of the low 
energy H + Hz system. 

CONCLUDING REMARKS 

We have considered the general relationship between desirable properties of an 
integration algorithm and the behavior of the stability matrix [Eq. (lo)] for a given 

lo To my knowledge, no one has previously noted that collinear nonreactive H + Ha collisions 
tend to take place more slowly than collinear reactive collisions. This behavior is not seen for three 
dimensional collisions and is the subject of more extensive investigations. 
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system of interest. In addition, we have demonstrated the nature of the stability 
matrix eigenvalues for a few model problems. Such considerations can lead to 
more efficient and accurate solutions to problems of chemical interest, either 
through numerical methods specifically tailored to the problem of interest or via 
suggestions for alternate coordinate systems in which dynamic instabilities are 
encountered less frequently. In addition, the relationships between the characteris- 
tic frequencies of the system and the absolute stability range of the integrator 
(Eqs. (37) and (43)), derived via the stability matrix, can aid in the choice of proper 
stepsizes. Thus far, little attempt has been made to exploit the behavior of the 
stability matrix. It would seem advantageous to further investigate this matrix 
particularly for dynamic problems which display strong dependence on initial 
conditions. Such systems include the formation and dissociation of collision 
complexes in bimolecular collisions [33], oscillator systems displaying Kolmogorov- 
Arnold-Moser instability [37] and a variety of models of biological interest [28]. 
For the notoriously unstable n-body gravitational problem [38] some work in this 
direction has already begun [39]. 
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